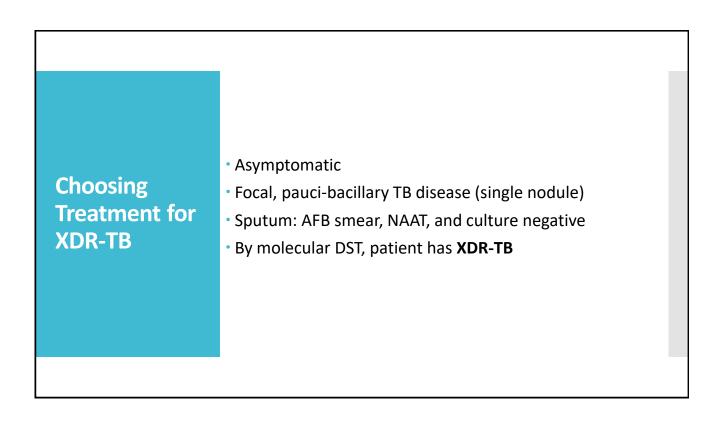

Using MICs to Individualize Treatment for Patients with TB Disease

Connie Haley, MD, MPH and Marie-Claire Rowlinson, PhD, D(ABMM) Southeastern National TB Center Division of Infectious Diseases & Global Medicine University of Florida

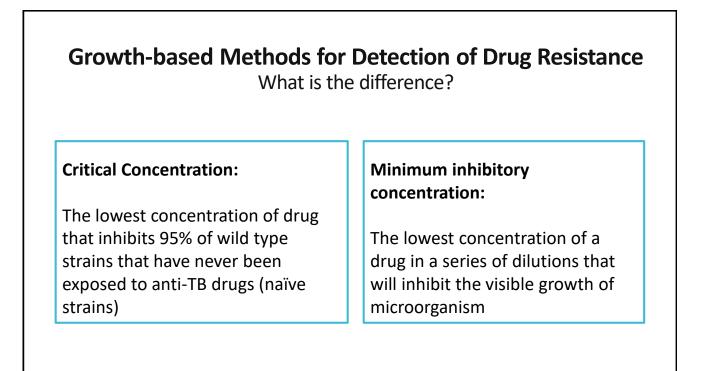

Initial Presentation	 49 y.o. female nurse, immigrated from Moldova ~1 y ago Aggressive cervical CA with lymph node metastases 4/2019 completed cisplatin/radiation therapy, good response Started adjuvant chemo, followed with serial CT scans CT 7/16/2019: Increased RUL nodule compared to 3/19 	
	 CT 7/16/2019: Increased RUL nodule compared to 3/19 FNA and core biopsy of lung nodule: Necrotizing granulomatous inflammation Numerous AFB seen; MTB PCR positive 	

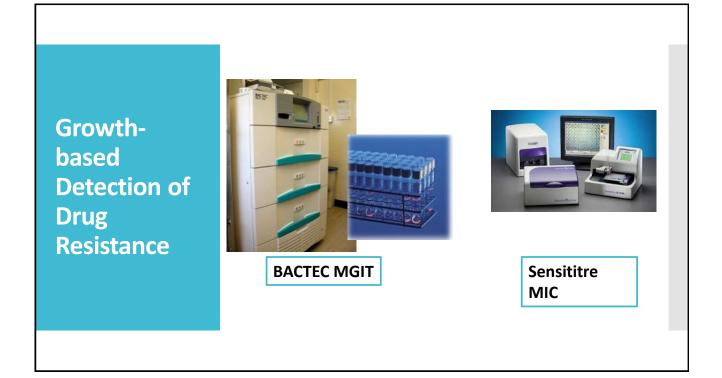
Initial Evaluation Treatment	 Adjuvant chemotherapy was held Referred to local health department Patient clinically asymptomatic HIV-negative No prior TB or LTBI treatment Sputum AFB smear and NAAT negative, culture pending 	
neutificiti	 8/6/2019 Patient started on RIPE 	

	• 8/15/19 Biopsy specimen grew AFB in culture, identified	
	as MTB by molecular probe	
	 Isolate on LJ slant sent to jurisdictional public health lab 	
Drug	 9/5/19 GeneXpert[®] MTB detected, RIF resistance detected 	
Susceptibility Results	 9/5/19 Isolate growth sent to CDC for MDDR* and to the Florida State Public Health Laboratory for HAINs/ and sequencing 	
	• 9/9/19 RIPE stopped	
	*MDDR=Molecular Detection of Drug Resistance • https://www.cdc.gov/tb/topic/laboratory/default.htm	
	 https://www.cdc.gov/tb/topic/laboratory/MDDRsubmissionform.pdf 	

	Results for Molecular Detection of Drug Resistance (Sanger Sequencing, complete panel); Conventional Drug Susceptibility Test in progress.								
	Locus (region) examined*	Result	Interpretation (based on in-house evaluation of 550 clinical isolates)						
	rpc8 (RRDR)	Mutation: TCG>TTG: Ser531Leu	Rifampin resistant. (100% of isolates in our in-house evaluation of 550 clinical isolates with this mutation are RMP-R.)						
	inhA (promotor)	No mutation							
CDC MDDR	katG (Ser315 codon)	Mutation: AGC>ACC: Ser315Thr	Isoniazid resistant. (100% of Isolates in our in-house evaluation of 550 clinical isolat with this mutation are INH-R.)						
	embB (Met308,Gly408)	No mutation	Cannot rule out ethembutol resistance. (79% of EMB-R isolates in our in-house evaluation of 550 clinical isolates have a mutation at this locus.)						
Report	pricA (promoter, coding region)	Mutation: ATG>AGG; Met175Am	Effect of this mutation on pyrazinamide resistance is unknown, Cannot rule out PZA resistance.						
	SyrA (QRDR)	Mutation: GAC>GGC: Asp94Gly	Offoxacin resistant, (100% of Isolates in our In-house evaluation of 550 clinical isolates with this mutation are CFL-R.)						
	rrs (1400 region)	No mutation	Possibly kanamycin resistant. (1 of 4 isolates with this eis mutation in our in-house evaluation ware KAN-R).						
	eis (promoter)	Mutation: C-12T	Cannot rule out resistance to injectable drugs (kenamycin, capreomycin, amikacin). (In our in-house evaluation of 550 dinies! isolates:						
	tlyA (antine ORF)	No mutation	 91% of AMK-R isolates have a mutation in the ms locus; 87% of KAN-R isolates have a mutation in either the ms locus or a different mutation at the els locus; 						
			. 55% of CAP-R isolates have a mutation in either the rrs locus or the tivA locus.)						

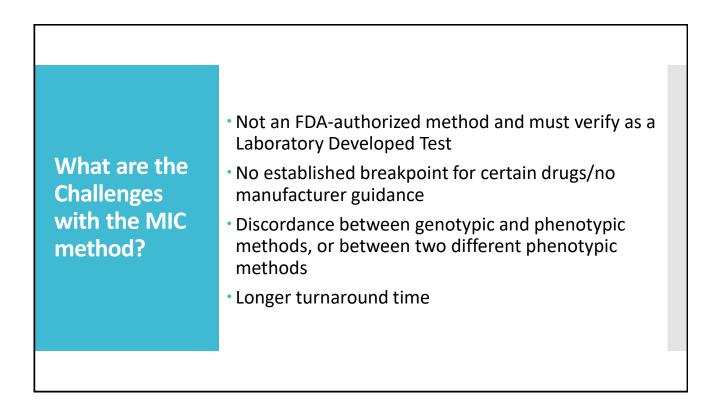
	Target	Mutation	Detected by	Predicted (date)
	<i>rpoB</i> (RRDR)	Ser531Leu, TCG/TTG	MTBDRplus, DNA Seg.	RIF-R, RFB-R
	<i>katG</i> (ORF, aa 225-345)	Ser315Thr, AGC/ACC	MTBDRplus, DNA seq	INH-R
	mabA-inhA promoter	No mutation	MTBDRplus, DNA seq.	
	<i>pncA</i> (promoter, ORF)	Met175Arg, ATG/AGG	DNA seq.	Possibly PZA-R
	embB (ORF, aa 288-509)	No mutation	DNA seq.	Likely EMB-S
	<i>gyrA/gyrB</i> (QRDR, aa 1- 132)	Asp94Gly, GAC,GGC	MTBDRsl DNA seg.	Possibly FQ-R
	<i>rrs</i> (1400 region)	No mutation	MTBDRsI	*Likely S to injectable drugs (ami, vio)
	<i>eis</i> (promoter)	WT band missing	MTBDRsl	*Likely R to injectable drugs (kan)
ſ	atpE (ORF)	No mutation	DNA seq.	*Resistance to <u>bedaquiline</u> is not predicted but cannot be ruled o
arch	RVo678/mmpR (ORF)	No mutation	DNA seq.	*resistance to <u>bedaquiline</u> is not predicted but cannot be ruled o
only	<i>rplC</i> (ORF, aa 84-217)	No mutation	DNA seq.	*Resistance to <u>linezolid</u> is not predicted but cannot be ruled out.
	<i>rrl</i> (nt: 2191-2929)	No mutation	DNA seq.	*Resistance to linezolid is not predicted but cannot be ruled out.


	Specimen Source:	Unknown	Report
	Analyte/Assay		Result
Growth-	TB Culture		Acid Fast Bacilli Found
based DST	TB Drug Susceptibility		
Results from	Isoniazid 0.1		Resistant - Preliminary
State Public	Isoniazid 0.4		Resistant - Preliminary
Health Lab	Pyrazinamide		Resistant - Preliminary
	Rifampin 1.0	ł	Resistant - Preliminary
	Ethambutol	1	Sensitive - Final


L

Phenotypic DST Results based on Critical Concentration	NTBC Agar Properties Susceptibility" Isoniazid 0.2 µg/mL Isoniazid 1.0 µg/mL Isoniazid 5.0 µg/mL Rifempin 1.0 µg/mL Ethembutol 5.0 µg/mL Streptomycin 10.0 µg/mL Rifebutin 2.0 µg/mL Ciprofloxacin 2.0 µg/mL Kanamycin 5.0 µg/mL Capreomycin 10.0 µg/mL Capreomycin 10.0 µg/mL Capreomycin 10.0 µg/mL PAS 2.0 µg/mL Ofloxacin 2.0 µg/mL	% Resistant 100 % 100 % 100 % 00 % 100 % 00 % 00 % 00 % 00 % 00 % 100 % 00 % 00 % 00 % 00 %	Interpretation Resistant Resistant Resistant Susceptible Resistant Resistant Resistant Susceptible Resistant Resistant Susceptible Resistant
	Comments and Disclaimers • See Report Comments and Disclaimers • Susceptibility testing methods: Indirect agar properties drug-consaining medium compared to drug-free mediu	n, 7H10 medium. Resistance is defined a m).	
	MTBC Pyrazinamide Susceptibility"	Result	
	Pyrazinamide 100 µg/mL	Resistant	

	 Can RIF or RFB be increased to overcome resistance?
How can MICs	 Is high dose INH a possibility?
inform the clinical	Are all injectables equally resistant?
treatment	Can FQ resistance be overcome?
decision?	 What is the susceptibility for BDQ?
	 Based on level of LZD resistance can a safer, lower dose be used and still effectively kill MTB?


Г

	CAP	MXF	RIF	AMI	STR	RFE	PAS	ETH	CYC	INH	LFX	EMB
	20	8	16	16	32	16	64	40	256	4	8	32
	CAP	MXF	RIF	AMI	STR	RFB	PAS	ETH	СУС	INH	LFX	EMB
	10	4	8	8	16	8	32	20	128	2	4	16
MIC	CAP	MXF	RIF	AMI	STR	RFB	PAS	ETH	CYC	INH	LFX	EMB
	5	2	4	4	8	4	16	10	64	1	2	8
Methods of Detection of	CAP 2.5	MXF 1	RIF 2	AMI 2	STR 4	RFB 2	PAS 8	ETH 5	CYC 32	INH 0.5	LFX	EMB 4
Drug	CAP 1.2	MXF 0.5	RIF	AMI 1	STR 2	RFB 1	PAS 4	ETH 2.5	CYC 16	INH 0.25	LFX 0.5	EMB 2
Resistance	CAP 0.6	MXF 0.25	RIF 0.5	AMI 0.5	STR 1	RFB 0.5	PAS 2	ETH 1.2	CYC 8	INH 0.12	LFX 0.25	EMB 1
	CAP	MXF	RIF	AMI	STR	RFB	PAS	ETH	CYC	INH	LFX	EMB
	0.3	0.12	0.25	0.25	0.5	0.25	1	0.6	4	0.06	0.12	0.5
	CAP 0.15	MXF 0.06	RIF 0.12	AMI 0.12	STR 0.25	RFB 0.12	PAS 0.5	ETH 0.3	CYC 2	INH 0.03	POS	POS

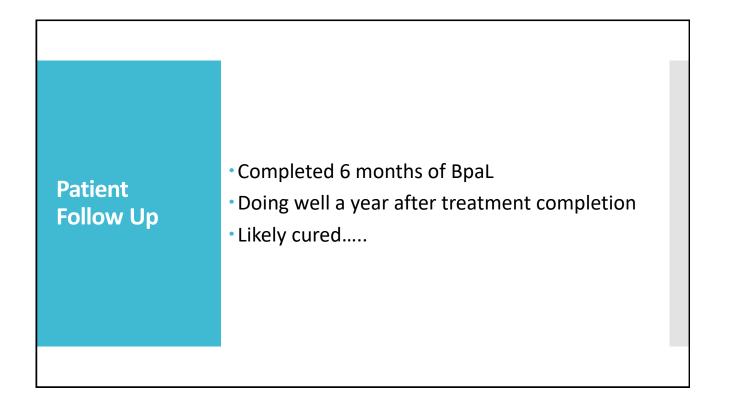
What are the Advantages	 More information for determination of susceptibility Tailored drug dosing, specific to patient: Use lower dose if drug is toxic Use higher drug dose above the MIC Use drugs with a narrow therapeutic window
What are the Advantages of MIC Method?	 Use lower dose if drug is toxic Use higher drug dose above the MIC

Initial XDR-TB	 10/7/2019: Patient initiated BDQ, LZD, CS, CFZ, EMB+
Therapy	MFX Close laboratory and clinical monitoring, drug levels Tolerated regimen well With patient input, decided to treat patient with BPaL*
	*FDA-approved for extensively drug resistant or treatment intolerant TB disease • <u>https://www.tballiance.org/access/pretomanid-and-bpal-regimen</u> • <u>https://www.fda.gov/media/128001/download</u>

	Isoniazid MIC Isoniazid Interpretation	2 µg/mL Resistant	Intermed	ible: <0.25 liate:0.25-1.
Florida DOH BPHL MIC Results	Rifampin MIC Rifampin Interpretation	>16 µg/mL Resistant	0 Resist	ible:≤1
	Ethambutol MIC Ethambutol Interpretation	2 µg/mL Before Susceptible	RIPE given	ible: ≤2 liate: 4.0
	Kanamycin Interpretation	Not Tested 0.25 µg/mL	Resistan Suscepti Resistan	ble: ≤2.5
	Rifabutin Interpretation	Susceptible	Resistan	
	Ofloxacin Interpretation Ethionamide Interpretation	Not Tested	Suscepti Resistan Suscepti Resistan	t:≥2 ble:≤1.2
			Koledin	

Florida DOH BPHL MIC Results	Amikacin MIC	0.25 µg/mL	
	Amikacin Interpretation	Susceptible	Susceptible: ≤2 Resistant: Breakpoint not established
	Moxifloxacin MIC	8 µg/mL	Gevalueried
	Moxifloxacin Interpretation	No interpretation	Susceptible: ≤0.12 Resistant: Breakpoint not established
	Para-Aminosalicylic Acid MIC	<0.5 µg/mL	
	Para-Aminosalicylic Acid Interpretation	Susceptible	Susceptible: ≤0.5 Resistant:Breakpoint not established
	Cycloserine MIC	8 µg/mL	
	Cycloserine Interpretation	Susceptible	Susceptible: ≤8.0 Resistant: Breakpoint not established
	Capreomycin MIC	10 µg/mL	Cetablielicu
	Capreomycin Interpretation	No interpretation	Susceptible: ≤5 Resistant
			Breakpoint not established

Florida DOH BPHL MIC Results Levofloxacin MIC Levofloxacin Interpretation


Linezolid MIC Linezolid Interpretation 8 ug/mL H No interpretation

0.12 µg/mL Susceptible Susceptible: ≤0.5 Resistant: Breakpoint not established

Susceptible: ≤1.0; Resistant: Breakpoint not established.

Drug (dose)	Trough (mcg/mL)	2h post-dose (mcg/mL)	6h post-dose (mcg/mL)	Typical peak serum concentration
Bedaquiline (200mg MWF)	0.51 (42.25h post dose)	1.40	1.42	1.2-1.8 (5-6h post dose, maintenance phase)
N-monodesmethyl Bedaquiline (metabolite)	0.22 (42.25h post dose)	0.24	0.27	
Pretomanid (200mg daily)	2.07 (18.25h post dose)	3.43	2.98	2.3 - 4.3 (5-6h post dose, at steady state)
Linezolid (600mg daily)	7.62 (18.25h post dose)	24.15 MIC = 0.12	17.88	12-26
Linezolid (600mg MWF)	<2.00*	19.04	13.6	12-26

Therapeutic	 University of Florida Infectious Diseases
Drug	Pharmacokinetic Laboratory
Monitoring	<u>https://idpl.pharmacy.ufl.edu/formsand-catalog/</u> National Jewish Medical Center
Laboratories	<u>https://www.nationaljewish.org/for-</u> professionals/diagnestic testing/adv/our
	professionals/diagnostic-testing/adx/our- laboratories/therapeutic-drug-monitoring

